

Course E-Syllabus

1	Course title	Operating System
2	Course number	1901473
2	Credit hours (theory, practical)	3
3	Contact hours (theory, practical)	0
4	Prerequisites/corequisites	Computer Organization (1901321) or 0907335
5	Program title	CS
6	Program code	1
7	Awarding institution	The University of Jordan
8	Faculty	т
9	Department	CS
10	Level of course	3
11	Year of study and semester (s)	Fall 2022
12	Final Qualification	BS.C
13	Other department (s) involved in teaching the course	-
14	Language of Instruction	English
15	Date of production/revision	-
16	Required/ Elective	Required

16. Course Coordinator:

Maen Al Assaf e-mail: m_alassaf@ju.edu.jo Office numbers, 22587 office hours 1-2 PM S,M,TH.

17. Other instructors:

Prof. Mohammed Qatawneh – mohd.qat@ju.edu.jo

18. Course Description:

This course enables students to understand and implement operating systems functions in managing computer systems component. It includes the following major topics: Introduction to Hardware and Software Concepts; Process and CPU scheduling, Threads, Synchronous and Concurrent Execution, Deadlock and Indefinite Postponement; Memory management: Physical and Virtual Memory; Management of external storage and I/O devices: Files management; Performance and Optimization; Security and Protection; and Distributed Systems. Linux Assignments

QF-AQAC-03.02.1.3

A- Aims:

The Goal:

The main goal of this course is to equip students with knowledge and skills on how the operation systems manage the computer system components and allocate resources to users in optimized and convenient ways.

Objectives

Enable students to:

1. Understand the tasks of the operating systems in handling hardware, software and users of computer systems.

2. Understand the techniques used by the operating system to manage processes, CPU, Internal and external memory, I/O devices, Networks, and Files.

3. Compare between techniques to operate CPU, Memory and I/O devises and select the best

4. Analyze basic process management, synchronization, and memory management techniques, Processor scheduling and process synchronization problems.

5. Implement some of the techniques used for managing CPU scheduling and processes, memory partitioning, allocation and replacement, deadlock handling, process synchronization, and storage accessing.

6. Highlight issues related to Protection and Security, Concurrent Programming, Multiprocessor Management, and Distributed Systems.

B– **Intended Learning Outcomes (ILOs)**: Upon successful completion of this course students will be able to ...

Successful completion of this course enables a student to:

A- Knowledge and Understanding:

A1) Know and Understand the basic concepts of operating system.

A2) Understand how does operating system manage resources: CPU, Main memory, external storage,

Input/output Devices, and Files.

B- Cognitive and Intellectual skills:

B1) Analyze and recognize the significance of several processor scheduling techniques

- B2) Analyze and recognize the significance of several synchronization techniques.
- B3) Design a simple monitor.
- B4) Analyze and recognize the significance of several deadlock handling approaches.
- B3) Analyze and recognize the significance of several memory management techniques
- B4) Analyze and recognize the significance of several disk scheduling and I/O device techniques
- B5) Compare between Protection and Security in sequential and Distributed systems

C- Subject specific skills - with ability to ...

C1) Implement typical operating system CPU scheduling techniques.

C2) Implement typical operating system techniques for process synchronization.

C3) Implement typical operating system techniques for deadlock handling.

C4) Implement typical operating system techniques for memory management.

C5) Implement typical operating system techniques for File and Disk management.

D- Transferable skills - with ability to

D1) Discuss and design and implement simple operating system. techniques.

D2) Present output of assignments on Linux

20. Topic Outline and Schedule:

	Lectu		SO		Teachin		
Week	re	Торіс		ILOs	g Methods *	Evaluation Methods	Reference
					/platform		
1		Introduction: Computer system components, O.S. history, Batch, real time, Multiprogramming, Multiprocessor, time sharing and Distributed systems	1,2	A1, A2	Lecture	Quiz and Exam	Textbook
2		O.S. Structures: system components, O.S. services, System calls, communication, system structure, virtual Machines, samples of operating systems	1,2	A1, A2	Lecture	Quiz and Exam	Textbook
3		Process: concepts, PCB, process scheduling, operations on processes, cooperating processes, interposes communications)	1,2,6	A2,	Lecture	Quiz and Exam	Textbook
4		CPU scheduling : concepts, scheduling criteria, Scheduling Algorithms)		A2, B1, C1, D1	Lecture	Quiz and Exam	Textbook
5		Threads: Motivation, benefits, user and kernel threads, Multithreading Models.		A2,	Lecture	Quiz and Exam	Textbook
6		Process Synchronization: Background, Critical Section Problem and its three solutions, Multiple Process Solution, Synchronization Hardware). Semaphores: (usage, implementation, Classic Problems of Synchronization)		A1, B2, C2	Lecture	Quiz and Exam	Textbook
7		Deadlock: System Model, Deadlock characterization, Methods for handling Deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock)		C3, D2	Lecture	Quiz and Exam	Textbook

	Midterm exam				
8	Main Memory: Address binding, Logical & physical addresses, Dynamic loading and Linking	A1, A2, B3, C4	Lecture	Quiz and Exam	Textbook
9+10	Virtual Memory: Background, Demand Paging, Process allocation, replacement strategies	A2, B3, C4, D1, D2	Lecture	Quiz and Exam	Textbook
11	File System Interface: File Concept, Access Methods, Directory Structure, File-System Mounting, File Sharing, and Protection.	A2, B4, C5, D1	Lecture	Quiz and Exam	Textbook
12	Mass Storage Structure: Basic Method, Hardware Support, Protection, Page Table structure, Shared Pages	A2, B4, C5	Lecture	Quiz and Exam	Textbook
13	I/O Systems: Overview, I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Requests to HW Operations, Streams, and Performance.	A2, B4, C5	Lecture	Quiz and Exam	Textbook
14	Protection, Security, and Distributed System structure: Protection, security ; Distributed system and networking topologies.	A2, B5	Lecture	Quiz and Exam	Textbook
15	Review				
16	Final Exam				

21. Teaching Methods and Assignments:

Teaching (T) Strategies: Class Contact is 3 Hours per week. The Course will be delivered using different means like lecture, presentations, seminars, discussion and case studies.

Learning (L) Methods: Students attend classes, ask questions and participate in discussions, do the home works, present the assignments and demo their works. A student will use the lab and select a programming language to implement the assignments. Students will access the e-learning platform for more instruction and supported learning materials.

22. Evaluation Methods and Course Requirements:

Assessment (A) Methods: There will be several assessment methods of evaluation the performance of the students such as attending and class participation, grading the homework, quizzes and assignments (20%); conducting the Midterm (30%) and the Final Exam (50%). Every student is expected to completely adhere to the assignments and project strict deadlines, absolutely no exceptions will be given.

23. Course Policies:

A- Attendance policies: Maximum allowable absence 15% of number of Lectures/Semester

- **B-** Absences from exams and handing in assignments on time: It is the student's responsibility to ensure that he/she is aware of all assignments, announcements and contents of missed sessions
- C- Health and safety procedures: University Regulations

D- Honesty policy regarding cheating, plagiarism, misbehavior:

It is the student's responsibility to ensure that he/she is adhere with cheating, plagiarism, misbehavior.

24. Required equipment:

Linux machine

25. References:

Text book (TB):

Avi Silberschatz, P. Galvin, and G. Gange (2011), Operating System Concepts, (8th Edition, John Wiley & Sons. INC. References:
1.Operating Systems, By W. Stallings.
2.Operating Systems, By : A. Tanenbaum.
3.Operating Systems, By: Davis and Rajkumar.
5. www.howstuffworks.com/operating-system.htm - 49k 6. www.webopedia.com/TERM/o/operating_system.html - 53k 7. www.linux.org/

26. Additional information:

N/A

Name of Course Coordinator: Maen Al Assaf. Signature: Maen al Assaf Date: 25-1-2023
Head of curriculum committee/Department: Signature:
Head of Department: Signature:
Head of curriculum committee/Faculty: Signature:
Dean: